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analysis of the kinetic data difficult, if not impossible. 
The absence of a kinetic isotope effect suggests (but does not 

prove) that proton transfer occurs after the rate-determining 
formation of a 5-coordinate intermediate (eq 18). This mech-

OAs(OR)3 + R 1 O H ^ O A S ( O R ) 3 ( O H R ' ) 

It <18> 
OAs(OR)2(OR') + ROH ^OAs(OR)2 (OR') (OHR) 

anism requires that proton transfer between alkoxyl groups of the 
trigonal-bipyramidal intermediate, probably accompanied by 
pseudorotation,21 be fast compared with dissociation of the in­
termediate. Such a postulate is consistent with the activation 
parameters which suggest essentially no bond breaking in the 
transition state. The intermediate is not a significant equilibrium 
species, however; NMR spectra showed no extra resonances and 
careful measurements showed that the a- and 0-proton chemical 
shifts of isopropyl alcohol and triisopropyl arsenate were inde­
pendent, respectively, or ester and alcohol concentrations. 

The mechanism of the acid-catalyzed exchange process presents 
an interesting problem. A catalyst which operates by lowering 
the entropic contribution to the free energy of activation while 
increasing the enthalpic contribution is at least unusual. The 
exchange kinetics are cleanly first order in p-toluenesulfonic acid 
in the concentration range studied, 0.02-0.37 M. Measurement 
of the conductance of solutions of the acid in acetonitrile showed 
that the molar conductivity is small and very nonlinear in this 
concentration range.3 Thus we conclude that the observed catalysis 
involves the undissociated acid. 

Chemical shift experiments described above suggest that the 
catalyst is largely hydrogen bonded to the ester in the concentration 
range used in the kinetic experiments. It seems reasonable to 
suppose, therefore, that alcohol exchange with the ester-catalyst 
hydrogen-bonded complexes E-C, E-2C, and E-A-C proceeds faster 

(21) Westheimer, F. H. Ace. Chem. Res. 1968, /, 70-77. 

Introduction 

Electron transfer is of importance in a variety of physical, 
chemical, and biological systems, ranging from semiconductors 
to cytochromes.1,2 Rates of electron transfer in these systems 

(1) Chance, B., DeVault, D. C, Frauenfelder, H., Marcus, R. A., 
Schrieffer, J. B., Sutin, N., Eds. "Tunneling in Biological Systems"; Academic 
Press: New York, 1979. 

than when the ester is free of hydrogen bonds or is associated only 
with alcohol molecules. The acid is expected to be a better hy­
drogen-bond donor, and this is reflected in the larger formation 
constant obtained from the chemical shift data. Hydrogen bonding 
to the unique ester oxygen might be expected to weaken the As=O 
bond, thereby facilitating the formation of a 5-coordinate inter­
mediate. However, this cannot be the major catalytic effect since 
one would then expect the reaction to be catalyzed by alcohol as 
well. This inductive effect in either case would be partially 
compensated by increased steric crowding in formation of a 5-
coordinate transition state or intermediate. The difference in 
behavior of the ester-acid and ester-alcohol hydrogen-bonded 
complexes must be due to the ability of the sulfonic acid to fa­
cilitate proton transfer. 

The kinetic isotope effect found for the acid-catalyzed-exchange 
process suggests that proton transfer occurs in this case prior to 
the transition state. If formation of the 5-coordinate transition 
state is accompanied by at least partial transfer of the alcohol 
proton to one of the sulfonate oxygens, the system is set up for 
pseudo-rotation accompanied by shift of the proton to another 
alkoxyl group. Indeed, there seems to be nothing to prevent the 
entire process from being concerted. Such a mechanism is con­
sistent with the activation parameters which suggest a looser 
transition state with relatively less As-O bond formation (and more 
As-O bond breaking) than in the uncatalyzed pathway. The effect 
of the catalyst apparently is to merge the proton-transfer step into 
the formation of the 5-coordinate species, thus destabilizing the 
intermediate and speeding the exchange process. 
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span some 20 orders of magnitude. There is a continuing interest 
in the origins of this large rate variation and both classical3,4 and 

(2) Reynolds, W. L.; Lumry, R. W. "Mechanisms of Electron Transfer"; 
Ronald Press: New York, 1966. Addison, A. W.; Cullen, W. R.; Dolphin, 
D.; James, B. R. "Biological Aspects of Inorganic Chemistry"; Wiley-Inter-
science: New York, 1977. 
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Abstract: A semiclassical description of electron-exchange reactions, in which a classical treatment of the solvent motion is 
combined with a quantum-mechanical description of the inner-sphere modes, is developed. This approach, which assumes 
that the solvent and inner-sphere reorganizations can be treated independently, yields relatively simple expressions for the 
variation of the electron-exchange rate constant and activation parameters with temperature. The semiclassical description 
is compared with the classical Marcus-Hush theory and with the quantum-mechanical theory of Kestner, Logan, and Jortner. 
The semiclassical formalism is remarkably successful in reproducing the results of the full quantum-mechanical theory at all 
temperatures. Both theories yield activation parameters that approach the classical values at high temperature. The activation 
parameters for the Fe(H2O)6

2+-Fe(H2O)6
3+ exchange reaction predicted by the various theories are compared with the experimental 

results. The calculations show that at 300 K the free energy of activation is close to the value predicted by the classical model 
despite the fact that the average energy of the reacting species is significantly less than the classical barrier. 
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quantum-mechanical5"10 interpretations have been proposed. In 
this article we show how various components of these treatments 
can be combined within a semiclassical framework and we apply 
the different approaches to outer-sphere electron-exchange re­
actions of metal complexes. Outer-sphere electron-exchange 
reactions 

ML 6
3 + + M L 6

2 + ^ ML 6
2 + + ML6

3+ (1) 

constitute the simplest class of electron-transfer reactions because 
no bonds are made or broken during the course of the reaction 
and because the reactants and products of exchange reactions are 
identical. Moreover, because of the symmetry of the reactions 
the driving force (energy gap) for the electron transfer is zero and 
the properties of only one redox couple (ML6

3+Z2+) rather than 
those of two different redox couples need to be considered. As 
a consequence the theoretical expressions are greatly simplified 
and differences between the various treatments are more readily 
evident. 

Studies of bimolecular electron-transfer processes have shown 
that reactions such as eq 1 occur in a number of steps:11,12 

ML6
3+ + ML6

2+ ^ ML6
3+IML6

2+ (2) 

ML6
3+IML6

2+ ^=± ML6
2+IML6

3+ (3) 

K _1 

ML6
2+IML6

3+ ^==t ML6
2+ + ML6

3+ (4) 

The first step is the formation of a precursor complex from the 
separated reactants (eq 2). The actual electron transfer occurs 
within the precursor complex to form a successor complex (eq 3). 
The dissociation of the successor complex into separated products 
occurs in the third step (eq 4). Provided that the formation of 
the precursor complex is not rate determining, ka, the observed 
rate constant for the electron exchange, is equal to K0kei

u where 
K0 is the equilibrium constant for the formation of the precursor 
complex (eq 2) and /tel is the first-order rate constant for electron 
transfer within the precursor complex (eq 3). Various expressions 
for X0 have been proposed. These have been discussed else­
where11,13 and will not be considered here. Instead we focus on 
the rate of electron transfer within the precursor complex. 

Electron transfer within a (weak-interaction) precursor complex 
is governed by the Franck-Condon principle.1'4 According to 
this principle, internuclear distances and nuclear velocities do not 
change during an electronic transition; in other words, the actual 
electron transfer occurs at essentially constant nuclear configu­
ration and momentum. The Franck-Condon principle is embodied 
in a different manner in the classical and quantum-mechanical 
electron-transfer theories. In the classical theories3,4,15 an acti­
vated-complex formalism is generally used. Since the activated 
complex for the electron transfer occurs at the intersection of two 
potential-energy surfaces—one for the reactants and the other for 
the products—the Franck-Condon principle is obeyed (the nuclear 
configurations and energies of the reactants and products are the 
same at the crossing point). On the other hand, in the quan-

(4) Hush, N. S. Trans Faraday Soc. 1961, 57, 155. 
(5) Holstein, T. Philos. Mag. 1978, 37, 49. Ann. Phys. (Leipzig) 1959, 
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(8) Ulstrup, J.; Jortner, J. /. Chem. Phys. 1975, 63, 4358. Efrima, S.; 
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Phys. 1974, 5, 183. 
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Figure 1. Plot of the potential energy of the reactants and products of 
an electron-exchange reaction as a function of nuclear configuration: E1^ 
is the energy for the light-induced electron transfer and £lh is the acti­
vation energy for the thermal electron transfer. For parabolic curves the 
abscissa corresponds to the straight line in /V dimensions connecting the 
reactants' and products' potentiaKenergy minima. 

tum-mechanical theories5"10,16 the intersection of the potential-
energy surfaces is deemphasized and the electron transfer is treated 
as a radiationless transition between the reactant and product 
states. Time-dependent perturbation theory is used, and the 
restrictions on the nuclear configurations for electron transfer are 
measured by the square of the overlap of the vibrational wave 
functions of the reactants and products (i.e., by the Franck-
Condon factors for the transition). 

In this paper we dissect the electron-transfer rate expressions 
arising from the classical and quantum-mechanical theories, and 
develop a semiclassical model. The latter combines the simplicity 
of the classical approach with some of the essential features of 
the full quantum-mechanical theory. In particular, the rate 
constant for electron transfer in the semiclassical model can be 
related to the classical rate constant by introducing a thermally 
averaged electronic transmission coefficient Kei and a thermally 
averaged nuclear tunneling factor Tn: 

*sc = Kel-l n*cl ~ *qm (•>) 

The departure of the electronic transmission coefficient from unity 
is generally interpreted as nonadiabatic behavior. Four cases can 
be distinguished depending on the values of xel and Tn: (a) simple 
adiabatic (Ke[ = 1, Tn = 1), (b) simple nonadiabatic (/ce, ^ 1, Tn 

= 1), (c) adiabatic with nuclear tunneling (<cel = 1, Tn ^ 1), and 
(d) nonadiabatic with nuclear tunneling («d ^ 1, Tn ^ 1). 

The remainder of this paper is divided into four parts. In the 
first part the classical activated-complex rate expressions are 
presented; these correspond to case (a) above. Case (b) is con­
sidered in the second part. The rate constants derived for case 
(d) by using first-order time-dependent perturbation theory are 
presented next. In the fourth part w.e develop the semiclassical 
description and generalize it to include case (c). The validity and 
utility of the various approaches are assessed in detail for the 
Fe(H2O)6

2+-Fe(H2O)6
3+ electron-exchange reaction, for which 

extensive numerical results are presented. 

I. Classical Models 
The potential energy of the reactants may be represented by 

an ^-dimensional surface in (N + l)-dimensional space where 
/V is the number of independent variables necessary to define the 
configuration of the coordination shells of the reactants.3,15 This 
surface will have valleys corresponding to the more stable nuclear 
configurations of the reactants. The potential energy of the 
products may be represented by a similar surface in the (N + 

(16) Ulstrup, J. "Charge Transfer Processes in Condensed Media"; 
Springer-Verlag: West Berlin, 1979. 
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l)-space. This surface will have its own valleys, corresponding 
to the more stable nuclear configurations of the products. The 
valleys in the reactants' potential-energy surface will generally 
occur at different nuclear coordinates from those in the products' 
potential-energy surface. This is due to the differing charge and 
size of the two reactants. 

In the absence of interaction between the orbitals of the 
reactants the two potential-energy surfaces will intersect on an 
(N- l)-dimensional surface on which the reactants and products 
have the same configurations and the same total energies. A cross 
section of two intersecting potential-energy surfaces (assumed to 
be harmonic) is shown in Figure 1. If there is interaction between 
the reactants, the degeneracy at the intersection will be removed 
and two new surfaces will be formed. The separation between 
the two surfaces is equal to 2#AB where HAB is the interaction 
energy (electronic coupling matrix element).3,15 

As discussed in the Introduction, the electron transfer in the 
activated-complex formalism occurs in the intersection region.3,17 

In the classical theories the interaction energy is assumed to be 
large enough so that the reactants are converted into products 
with unit probability in the intersection region, but small enough 
so that it can be neglected in calculating the amount of energy 
required to reach the intersection region. The latter is reached 
by a suitable fluctuation in the nuclear configurations of the 
reactants. If Eltl is the potential energy required to change the 
nuclear coordinates of the reactants from their equilibrium values 
to the coordinates appropriate to the intersection region (i.e., iith 
is the barrier for the thermal electron-transfer reaction), then the 
rate constant for electron exchange in the high-temperature limit 
is given by3 

fce, = vne~E^RT (6) 

where i>„, the effective vibration frequency of the reactants, is 
defined by the parabolic curves in Figure 1. For many purposes 
it is convenient to relate the rate constants to a vertical or optical 
energy defined as the difference between the energies of the 
reactants and products at the equilibrium configuration of the 
reactants. If this difference is denoted by E0„ (Figure 1) then £op 
= AE^ if, as in Figure 1, the relevant potential-energy curves are 
parabolic. 

The reorganization energy is made up of two parts, the in­
ner-shell and the outer-shell (solvent) reorganization energy: 

•^th — ^ in "•" ^out 

AGt = AG,*, + AG* 

(7a) 

(7b) 

(8) 

In eq 8 AG]J is the free energy required to reorganize the reactants 
prior to electron transfer.18 The relationship between these 
quantities will be illustrated by considering the reorganization of 
the precursor complex in the Fe(H2O)6

2+-Fe(H2O)6
3+ exchange 

reaction: 

Fe(H2O)6
2+IFe(H2O)6

3+ ^ Fe(H2O)6
3+IFe(H2O)6

2+ (9) 

Provided that the metal-ligand vibrations are harmonic (at least 
to the intersection region), the inner-shell reorganization energy 
can be estimated from the equilibrium bond lengths and sym­
metrical stretching (breathing) frequencies of the reactants.15 The 
equilibrium iron-oxygen distances for Fe(H2O)6

2+ and Fe(H2O)6
3+ 

determined crystallographically are 2.12 and 1.98 A,19 and the 

(17) Sutin, N. In "Bioinorganic Chemistry", Eichhorn, G. L., Ed.; Am­
erican Elsevier: New York, 1973; Vol. 2, Chapter 19, p 611. 

(18) Asterisks (*) rather than double daggers (J) are used to distinguish 
the reorganization parameters defined here from the usual transition-state 
parameters, which are defined for a kT/h prefactor. Although £lh in eq 7a 
is also an asterisked quantity, for convenience the asterisk has been omitted. 
For a further discussion of the differences between asterisked and daggered 
quantites see, for example, Marcus, R. A.; Sutin, N. Inorg. Chem. 1975, 14, 
213. 

(19) Hair, N. J.; Beattie, J. K. Inorg. Chem. 1977, 16, 245. Bauer, W. 
H. Acta Crystalhgr. 1964,17, 1167. Montgomery, H.; Chastain, R. V.; NaIt, 
J. J.; Witowska, A. M.; Lingafelter, E. C. Ibid. 1967, 22, 775. Hamilton, W. 
C. Ibid. 1962, 15, 353. 

breathing frequencies of the complexes are 390 and 490 cm"1,20'21 

respectively. Since an exchange reaction is being considered, the 
two reactants and the two products have the same nuclear con­
figurations (Fe-O distances) in the activated complex. The po­
tential energy required to adjust the Fe-O distances in Fe(H2O)6

2+ 

and Fe(H2O)6
3+ to the activated complex value d* = (f2d2° + 

/ V 3
0 W 2 + / M i s g i v e n by 

F' = 
^ Tl (fi+h) 

(10) 

where d2 and d^° are the equilibrium metal-oxygen distances, 
and/2 and/3 are the breathing force constants of the two reactants 
(fi = AvV^c1H where i> is the breathing frequency in cm"1 and ^, 
the reduced mass, is equal to the mass of a single water molecule). 
The free energy required to reorganize the inner-coordination shells 
is related to the potential energy for the reorganization by 

AG*, = E'in - RT In Q*/U1Q1 (H) 

where the g, are vibrational partition functions. We see that AG*, 
~ £•*„ provided that the vibration partition function ratio is close 
to unity. 

The vertical energy £in is the amount of energy required to 
change the Fe-O distances from their equilibrium values in Fe-
(H2O)6

2+ and Fe(H2O)6
3+ to the equilibrium values in Fe(H2O)6

3+ 

and Fe(H2O)6
2+, respectively. It is given by 

(12a) 

(12b) 

Em = 3(f2+ /3)(</2° - rf3
0)2 

It is apparent from eq 12b that the activation energy for inner-
sphere reorganization is slightly less than one-quarter of the vertical 
distance between the potential-energy sufaces at the minimum 
in the reactants surface. For the Fe(H2O)6

2+-Fe(H2O)6
3+ ex­

change reaction (E1n - 4£*n)/4£jn amounts to 5.3% or ~0.5 kcal 
mol"1. 

The reason for the difference between Ein and 4£*„ is that the 
potential-energy surface considered is not parabolic with respect 
to the reaction coordinate. Figure 2 shows contours of a number 
of different potential-energy surfaces, all corresponding to har­
monic distortions of the reactants and products (the dashed line 
is the reaction coordinate in each case). Figure 2a shows the 
energy contours for an exchange reaction in which the two 
reactants have different breathing force constants. Figure 2b 
shows the contours when the two reactants have the same 
breathing force constants, and Figure 2c corresponds to the case 
where the two reactants do not change their force constants after 
electron transfer (this assumption is made in some of the quan­
tum-mechanical treatments). In Figure 2b the reaction coordinate 
is a straight line, yielding the parabolic curves shown in Figure 
1. In Figure 2a the point labeled e, which occurs at the midpoint 
of the line joining the two minima, satisfies the relationship E-m 
= AEC and it is readily apparent that for this case £*„ < Et. 
Although the reaction coordinate in Figure 2c is not a straight 
line, the transition state and the equilibrium nuclear configurations 
of the reactants and products do lie on a straight line; thus E1. 
= 4E*n also for the case depicted in Figure 2c. Since £in = 4/T1n 
when the breathing force constants of the reactants are identical 
(Figure 2b) we define a reduced force constant/in by 

fin = 2M/(f2+f3) (13a) 

The value of the reduced force constant is, of course, independent 

(20) The metal-oxygen symmetrical stretching frequency of Fe(H2O)6
2+ 

is 390 cm"'.21 The stretching frequency of Fe(H2O)6** has not been deter­
mined; however we have assumed that it is the same as the stretching fre­
quency of Cr(H2O)6

3+ (490 cm-1).21 The assumption that the metal-oxygen 
stretching frequencies of first-row transition-metal ions are insensitive to the 
nature of the metal ion is supported by the data available for the 2+ ions: the 
stretching frequencies of Ni(H2O)6)

2+, Mn(H2O)6
2+, and Zn(H2O)6

2+ lie 
between 360 and 405 cm"1. 

(21) Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Co­
ordination Compounds", 3rd ed.; Wiley-Interscience: New York, 1978. 
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Figure 2. Energy contours of different potential-energy surfaces for 
electron-exchange reactions; the dashed line indicates the reaction co­
ordinate. In (a) it is assumed that the two reactants have different 
symmetrical stretching frequencies and that these frequencies are in­
terchanged upon electron transfer; in (b) it is assumed that the two 
reactants and the two products have the same symmetrical stretching 
frequency; in (c) it is assumed that the two reactants have different 
symmetrical stretching frequencies (as in case (a)), but that these fre­
quencies do not change upon electron transfer. In each case the reaction 
coordinate is defined as the steepest descent path that connects the saddle 
point to the reactants' and products' potential-energy minima; this path 
is uniquely defined since the effective mass is the same for both coor­
dinates. 

of the oxidation state of the reactant, and replacing / 2 and/3 in 
eq 10 by/ in does not change the value of E*m. In terms of fm, Ein 

is given by 

£ i n = 4El = ^Md2
0 • di0)2 (13b) 

We consider next the energy required to reorganize the solvent 
outside the inner coordination shells of the reactants. The ex­
pression for this reorganization energy, which has been derived 
by Marcus3 and Hush4 by using a continuum model for the 
solvent,22"24 is 

£out (Aq) 
A«out ~ " J U + S - O ( H ) <»> 

(22) The vibrational spectrum of water shows a number of bands.23 The 
major band occurs at ~ 1 cm and satisfies the condition for a classical 
treatment of the solvent reorganization.16 Note, however, that the spectrum 
of water also contains bands of higher frequency. More detailed treatments, 
which allow for the dispersion of solvent frequencies, have been presented;6,10,16 

for example, a correction factor of 0.87 to eq 14 is suggested in ref 10. 
(23) Saxton, R. Proc. R. Soc. London, Ser. A 1952, 21$, 473. 

where Aq is the charge transferred, a2 and a3 are the radii of the 
two reactants, r is the distance between the centers of the two 
reactants in the activated complex (generally taken equal to the 
close-contact distance (a2 + ^3) since this distance is assumed to 
correspond to the maximum rate), n is the refractive index, and 
Z)5 is the static dielectric constant of the medium. Since the 
continuum model does not allow for a change in the radii of the 
reactants, it is necessary to use an average reactant radius in eq 
14.25 For consistency, this radius is defined by a = 2a2a3/(a2 

+ a3), a definition which seems reasonable since it yields an a value 
which is very similar to the value obtained by using force-constant 
weighting. 

To summarize, the electron transfer in the classical model is 
assumed to be adiabatic (that is, it is assumed that the reactants 
are converted into products with unit probability in the activated 
complex), and nuclear tunneling effects are neglected. The rate 
constant for electron transfer is given by 

J. - -(£ou,+£in)/4«7- (15) 

where Eout and £ in are temperature-independent reorganization 
energies and v„ is an effective frequency for nuclear motion. In 
terms of the treatment of Dogonadze and co-workers,10,24 this 
frequency is given by 

it ^out "*" ''in E-m 

^DUt ' £ i n 
(16) 

Since metal-ligand stretching frequencies are typically 300-500 
cm"1 while average solvent orientation frequencies are an order 
of magnitude lower,22"24 vjvin ~ (EJ(Eout + ^1n))1/2 unless E1n 

« E0M. 
We conclude this section by commenting on the difference 

between reorganization energies and reorganization free energies. 
In general, E is clearly defined as a temperature-independent 
energy difference on a potential-energy surface. The only am­
biguity arises in the case of the continuous low-frequency solvent 
vibrations. In the process of making the connection between the 
ostensibly temperature-independent harmonic oscillator Hamil-
tonian and the dielectric continuum model for the solvent, Le-
vich6,26 ended up with a temperature-dependent solvent reorg­
anization energy, which is, in fact, identical with the expression 
derived by Marcus (eq 14). The latter is clearly a free energy. 
However, since the actual temperature dependence of the re-
organizational free energy of water is very small at room tem­
perature this apparent inconsistency is of little consequence at room 
temperature. Thus, although the reorganization might have an 
entropy contribution so that, in general, AG'X ̂  E&, in the classical 
model this entropy contribution is assumed to be negligible. To 
the extent that this is true, AGx" and £,„ can be used inter­
changeably and eq 15 can be written as 

^ 1 = „ e-we*o,t+AG%)/Kr (17) 

As will be seen, the use of the high-temperature model neglecting 
ASx t u r n s o u t t 0 De very useful in practice. 

II. The Electronic Transmission Coefficient 
In this section we introduce the electronic transmission coef­

ficient. The use of this coefficient enables us to treat nonadiabatic 
reactions within the activated-complex framework, and provides 
a useful link between the classical and quantum-mechanical rate 
expressions. 

The probability that the system will undergo a transition from 
one zero-order potential-energy surface to the other (in other 

(24) Dogonadze, R. R. In "Reactions of Molecules at Electrodes", Hush, 
N. S„ Ed.; Wiley-Interscience: New York, 1971; Chapter 3, p 135. 

(25) The expression for U0111 derived in ref 7 gives unrealistic values because 
the evaluation of the electric displacement vector for the reactants and 
products was based on different geometries of the twd ions in the reactant and 
product states. Although this, of course, corresponds to the actual situation, 
it is inconsistent with the electrostatic model used which is based upon 
charging arguments for cavities of fixed radii. 

(26) As pointed out by Levich,6 no quantity depending on macroscopic 
parameters such as temperature and solvent density can be contained in the 
quantum-mechanical Hamiltonian of the system. 
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words, that the reactants will be converted into products) on 
passing over the potential-energy barrier in Figure 1 is given by16 

KA = 2P12°/(1 + P12
0) (18) 

where P12
0 is the probability of the reactants being converted into 

products per single passage through the intersection region. 
According to Landau27 and Zener,28 P12

0 is given by 

P 1 2 " = 1 - ^1HAB11 Hs K-^ (19a) 

where sA and sB are the slopes of the (zero-order) surfaces in the 
intersection region (sA = -sB for an exchange reaction), and v is 
the average velocity with which the system moves through the 
intersection region (v is generally taken as the Boltzmann averaged 
velocity (2RT/ir^)1^2, where \i is the effective mass of the system). 
It is evident from eq 19a that P12

0 = 1 when HAB is large (strong 
coupling; the electron transfer is adiabatic), and that P12

0 « 1 
when HAB is small (weak coupling; the electron transfer is no-
nadiabatic). Equation 19a is evaluated for a linear path tangent 
to the reaction coordinate at the crossing point (the general case 
is analogous to Figure 2c but with the two inner-sphere modes 
combined into a single mode and the remaining mode replaced 
by a solvent mode).16 Substituting v\sA - sB\ = 4vn(-7rRT(EOM + 
EiB))1/2 in eq 19a gives eq 19b. Expanding the exponential (no-
nadiabatic case) in eq 19b and substituting into eq 18 gives eq 
20, which is the expression for Kel for a nonadiabatic electron-
exchange reaction. Finally, combining eq 5 (with Tn = 1) with 
eq 15, 18, and 20 gives eq 21. 

p 0 _ ] _ e-{HAB
2/hrM^/(Emt+EJRD^2 

= 2HA// T3 \ 

"d kvn \(Eout + EJRTj 

1/2 

* e l — 

2HA 

\(E0Ut + EJRT} 
-<EM+E^)/4RT 

(19b) 

(20) 

(21) 

If the classical rate constant expression eq 17 is used instead of 
eq 15, then the various substitutions give 

. 2 / _3 V / 2 = 2#V/ ^ V 
el h \(EOM + EJRT) 

-(AG*„,„+AG*in)/R7- (22) 

Equations 21 and 22 are the expressions for the rate constant for 
a nonadiabatic electron-exchange reaction in the activated-complex 
framework. Note that these expressions no longer contain the 
nuclear vibration frequency; this frequency has been replaced by 
a prefactor that is essentially the frequency of electron transfer 
within the activated complex.17 

III. Quantum-Mechanical Models 
In the previous sections the electron transfer was described in 

terms of an activated-complex model. In this section we start from 
a quantum-mechanical treatment of nonadiabatic reactions. This 
treatment, which is based upon Fermi's golden rule, has been 
developed by Levich,6 Dogonadze and co-workers,10 Kestner, 
Logan, and Jortner,7 Van Duyne and Fischer,8 and Efrima and 
Bixon.8 

According to Fermi's golden rule the probability per unit time 
that a system in an initial vibronic state Av will pass to a set of 
vibronic levels [Bw] is given by6,8 

WA,= 

Pw = T.\{XA»\XBw)\2&(.eAc - « * J 

(23) 

where HAB is the electronic coupling matrix element introduced 
earlier, pw is the weighted density of final states (i.e., the number 
of final states per unit energy interval weighted by the Franck-
Condon factor ! (x^lx^)! 2 ) . *A» ar>d *BW are the unperturbed 

660. 

(27) Landau, L. Phys. Z. Sowjetunion 1932, 2, 46. 
(28) Zener, C. Proc. R. Soc. London, Ser. A 1932, 137, 696; 1933, 140, 

energies of the vibronic levels, and <5 is the Dirac 6 function that 
ensures energy conservation. It is assumed that only two electronic 
states, one for the reactants and one for the products, need to be 
considered. Assuming a Boltzmann distribution over the vibra­
tional energy levels of the initial electronic state A, the thermally 
averaged probability per unit time of passing from a set of vi­
brational levels [Av] of the initial electronic state to a set of 
vibrational levels [Bw] of the final electronic state B is 

WA = — Y.e-^lRTWAc = 
SiA v 

hQA 
-2Z2Ze-^RT\(xA„\XBJ\25UA„ - *BW) (24) 

where QA = ^,ve~'A^RT. Equation 24 is a general expression for 
the probability per unit time of a transition from an initial 
electronic state A to a final electronic state B. It is valid provided 
that the density of final states is large and the transition probability 
is small, that is, provided WAT « 1, where T is the duration of 
the perturbation causing the transition.7 

Provided that the energy of the system can be expressed as a 
sum of contributions from the 2+ ion, the 3+ ion, and the solvent, 
the vibrational wave function can be expressed as a product of 
terms 

eAu = C2,k + £ 3 , / + fs,m 

XAv ~ X2,kX3,lXs,m 

XBw X2,pX3,gXs/ 

where (2,fc), (3,/), and (s,w) define the initial vibrational states 
of the 2+ ion, the 3+ ion, and the solvent, respectively (state A), 
and (2,p), Ci,q) and (s,r) define their final vibrational states (state 
B). The rate constant for electron exchange is then 

*el = 

JAB 

QiQiQs 

k I m P Q r 

«[(«& + 4i + 4*) - (<p + <ii + £ ) ] (25) 

where 
Q2 = J>-«u/*r 

k 

Qi = Y.e-<v'RT 

i 

Qs = Ztr»*J*T 

m 

SiMXq2 = l < X 2 . k l X 3 , g > | 2 

Sy-i/ = \(Xy\Xi,P)\2 

^ s , m ; s / — I \Xs,mlXs,r / I 

Kestner, Logan, and Jortner7 have shown that eq 25 reduces to 
eq 26 when the solvent modes are treated by a harmonic ap­
proximation in the high-temperature limit (i.e., classically; this 
assumption is justified since hvoui < kT except at very low tem­
perature22). 

K\ = 
2HAB>/ -3 V / 2 

hQ2Q \E0MRTj 
ZZZZe-^+<A^*T[SwjS3,^) X 
k I p q 

e - (£ o u , +A«) 2 / 4£„ ,Rr ( 2 6 ) 

where 

Ae = (ef,„ + <f,,) - («& + efj) (27a) 

= (4 ~ «f) (27b) 
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Finally, it can be shown7'29 that the high-temperature limit of eq 
26 is eq 21, the semiclassical high-temperature limit for a no-
nadiabatic electron-exchange reaction. This is an important result, 
since, by use of the Landau-Zener equation, the quantum-me­
chanical approach (which is limited to the weak-coupling case) 
can be generalized to include any desired degree of electronic 
coupling.6 

Although eq 26 has been derived assuming energy conservation 
in the electron-transfer step, it does not require that the inner-
sphere and solvent modes conserve energy separately. Rather one 
mode can borrow energy from the other. This is allowed for by 
the last factor in the quadruple sum (the Gaussian term). Because 
of energy borrowing it is possible for the reactants' inner-sphere 
energy {t^k + e ,̂) to be considerably different from the products' 
inner-sphere energy (e2j, + «f,?) where k ?± p and / ^ q. In fact, 
the Gaussian factor has its maximum value when Ae = -Eom, a 
condition that corresponds to a strongly exothermic inner-sphere 
change. 

All of the terms in the sum of eq 26 have been evaluated for 
the Fe(H2O)6

2+-Fe(H2O)6
3+ exchange reaction by using either 

separate breathing frequencies of 390 and 490 cm"1 for Fe-
(H2O)6

2+ and Fe(H2O)6
3+, respectively, or the average frequency 

of 432 cm"1 defined by eq 13a.30 The results of the two calcu­
lations do not differ significantly: the difference between the AG* 
(and AEfx, see below) values calculated by the two methods is less 
than 0.02 kcal mol"1 over the temperature range 20-1500 K. The 
use of an average frequency instead of two separate frequencies 
means that the potential-energy contours are circular as in Figure 
2b, rather than elliptical as in Figure 2a. As a consequence of 
the use of an average frequency the problem can be easily re­
formulated as a one-dimensional one since the reaction coordinate 
is now the straight line joining the two minima in the poten­
tial-energy surface (Figure 2b). Because a single frequency is 
being used, this line is a normal coordinate of the system, and the 
fluctuation leading to reaction is then a simple harmonic motion 
(the antisymmetric combination of breathing modes, with zero-
point energy hvm/2) along this coordinate. Under these conditions 
eq 26 can be reduced to a double sum: 

2HM
2f ^ \ 

" hQA \E0UIRT) 

1/2 

L \Ze~'AmlRT[Sm „2] e~(E°"+A<>2/4£out«r 
m n 

(28) 

where QA is a single-mode partition function, At = («f - e„), e^ 
= m(hvin), and the m(n) sum is over the reactant's (product's) 
quantum numbers associated with the normal coordinate defined 
above. The new Franck-Condon factor SnJ is defined in terms 
of the distance between the two minima in the potential-energy 
surface (Figure 2b), which is equal to V2(d2° - d°). 

The above formulation of the problem as a one-dimensional 
one using a single normal coordinate is, of course, identical with 
the two-dimensional problem based on the separate Fe(H2O)6

2+ 

and Fe(H2O)6
3+ breathing modes when both are assigned the same 

average frequency. The advantage of the single normal-mode 
formulation is that the calculations are simpler and closed-form 
expressions can be more readily derived. The calculations (using 
either eq 26 with the average frequency or eq 28) show that the 
root-mean-square value of A« at room temperature is 1.4 X 103 

cm"1. Since (Ae)R is zero,31 on the average the transition is to 

(29) A single frequency for the breathing motions of the inner-coordination 
shells was used in deriving the high-temperature limit. The same high-tem­
perature limit is obtained (numerically) for all of the cases depicted in Figure, 
2. 

(30) The calculations were carried to high temperatures (1500 K) to show 
the convergence of the quantum-mechanical activation parameters to the 
classical values and are in no way intended to mimic the behavior of actual 
aqueous solutions. Accordingly, Eoa was assumed to be temperature inde­
pendent and the room-temperature values of D1 and n2 were used. The 
Franck-Condon factors were calculated by using simple-harmonic-oscillator 
wave functions, with the metal-ligand stretching frequencies, the mass of the 
ligand, and the difference between the metal-ligand bond distances in the two 
oxidation states as parameters. 

(31) See Appendix A. 

NUCLEAR CONFIGURATION 

Figure 3. Percent contribution to the rate of the Fe(H2O)2
2+-Fe(H2O)6

3+ 

electron-exchange reaction at 300 K from reactants in a given vibrational 
level, calculated by using a one-dimensional model (eq 31b) with E001 = 
25.6 kcal mol"1 (r = 6.9 A), (d2° - d2°) = 0.14 A, and P1n = 432 cm"1. 

NUCLEAR CONFIGURATION 

Figure 4. Percent contribution to the rate of the Fe(H2O)6
2+-Fe(H2O)6

3+ 

electron-exchange reaction at 500 K from reactants in a given vibrational 
level, calculated by using a one-dimensional model as for Figure 3. 
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NUCLEAR CONFIGURATION 

Figure 5. Percent contribution to the rate of the Fe(H2O)6
2+-Fe(H2O)6

3+ 

electron-exchange reaction at 100 K from reactants in a given vibrational 
level, calculated by using a one-dimensional model as for Figure 3. 

products that have either three quanta of vibrational energy more, 
or three quanta less, than the reactants. If the sum in eq 28 is 
restricted to terms for which Ae = 0, the calculated rate constant 
at 300 K is approximately 10% of the value obtained when all 
the terms are included. 

The percentage of the total reaction at 300 K contributed by 
a pair of reactants with a particular inner-sphere energy em in the 
reactive normal mode is shown in Figure 3. As expected, a 
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Table I. Activation Parameters for the Fe(H2O)6 
Quantum Mechanical Model" 

' -Fe(H2O)6
 3+ Electron Exchange Reaction Calculated by Using the Full 

j?n>R, kcal (A^ 1 )R , kcal 
mol"1 mol"1 T, K 

AGt kcal 
mol"1 

AHt, kcal 
mor1 -ASt, c a l 

eg"' mol"1 
A#fn, kcal 

mor1 
AH* fout- kcal 

mol"1 
(AFf1 

20 
40 
60 
80 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 

1000 
1500 
2000 

7.46 
8.52 
9.54 

10.48 
11.26 
12.61 
13.36 
13.79 
14.05 
14.22 
14.33 
14.42 
14.48 
14.52 
14.56 
14.58 
14.60 
14.62 
14.68 
14.72 
14.73 
14.77 

6.40 
6.41 
6.57 
7.02 
7.71 
9.64 

11.14 
12.14 
12.81 
13.25 
13.57 
13.79 
13.96 
14.09 
14.19 
14.27 
14.33 
14.38 
14.54 
14.65 
14.70 
14.77 

52.92 
52.59 
49.57 
43.19 
35.53 
19.80 
11.09 
6.58 
4.15 
2.76 
1.91 
1.38 
1.03 
0.79 
0.61 
0.49 
0.39 
0.32 
0.14 
0.04 
0.02 
0.0 

25.6 kcal mol" 

0.01 
0.03 
0.20 
0.65 
1.34 
3.27 
4.77 
5.76 
6.42 
6.87 
7.18 
7.40 
7.57 
7.70 
7.80 
7.87 
7.94 
7.99 
8.14 
8.26 
8.30 
8.37 

(/•=6.9 A), 

6.39 
6.38 
6.37 
6.37 
6.37 
6.38 
6.38 
6.38 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.39 
6.40 
6.40 
6.40 

and Vin = 

0 
0.01 
0.17 
0.61 
1.29 
3.19 
4.65 
5.62 
6.25 
6.67 
6.95 
7.15 
7.29 
7.39 
7.46 
7.51 
7.54 
7.56 
7.58 
7.41 
7.17 

6.38 
6.36 
6.34 
6.33 
6.33 
6.31 
6.29 
6.28 
6.26 
6.24 
6.22 

.20 

.18 

.16 

.13 

.11 
6.09 
6.07 
5.96 
5.75 
5.54 

a Calculated from eq 28,using {d2
a -d3°) = 0.14 A,£"out = 432 cm" 

significant portion of the reaction comes from reactants having 
insufficient inner-sphere energy to reach the classical transition 
state (2930 cm-1 or 8.4 kcal mol"')- Figures 4 and 5 are similar 
to Figure 3 except that the temperatures are now 500 and 100 
K, respectively. The rate changes by many orders of magnitude 
over this temperature range. At 500 K most of the reaction occurs 
from a vibrational level that is one quantum higher than the level 
contributing most of the reaction at 300 K. At 100 K most of 
the reaction occurs from the two lowest vibrational levels. Figures 
3-5 thus provide a qualitative picture of the temperature de­
pendence of the activation enthalpy and entropy expected for the 
quantum-mechanical model. 

Activation Parameters. In order to obtain further information 
about the temperature dependence of the rate constants and for 
purposes of comparison with other models, thermodynamic ac­
tivation parameters for the quantum-mechanical case can be 
defined as follows. The quantum-mechanical and semiclassical 
models converge at high temperatures (eq 26 and eq 21 and 22). 
This suggests an approach in which the semiclassical high-tem­
perature expression is generalized by the introduction of a tem­
perature-dependent inner-sphere reorganization energy: 

kd = „nKeie-(AC»M,+AC»111(n)/*r ( 2 9 ) 

Remaining within the weak-coupling limit, Kel in eq 29 can be 
replaced by the appropriate Landau-Zener expression to give 

_ WABH ^ V/2 

ka h \(E0M + Ein)RTj 6 
e-(AO*out+AC»in(r))/Rr (30) 

Equation 30 is, of course, similar to eq 22 but it has been defined 
for all temperatures by using AGjn(T) in the exponent instead of 
AG*,. Comparison of eq 26 with eq 30 shows that (AG*,,, + 
AGjn(T)) is given by 

e-(AG«out+AG«i„(r))/J?7- _ 

^EZEZe-^+^RT[S2,k.^sy,2/] x 
C2C3 k l p q 

e-(£om+A«)2/4£„u,RT ( 3 l a ) 

The analogous equation for the one-mode case is 
e-(AG'oul+AC»in(r))/«r _ 

^-H'Le-^lRTsnJe-V*+**!.**"** (31b) 
Q A m n 

/£out + g inV / 2 

V £out / < 

500 
T, "K 

Figure 6. Plot of the activation parameters for the Fe(H2O)6
2+-Fe-

(H2O)6
3+ electron-exchange reaction vs. temperature calculated by using 

a one-dimensional model as for Figure 3. The horizontal line is the 
classical value of the activation energy and enthalpy. 

The enthalpy and entropy contributions are readily obtained from 
the temperature dependence of (AG*,ut + AG,*n(T)) = AG*,, using 
the Gibbs-Helmholtz equation. 

The calculated values of AGx, &H\> a n^ ASx f°r t n e Fe-
(H2O)6

2+-Fe(H2O)6
3+ exchange reaction are presented in Table 

I and plotted in Figure 6. As is required by the formalism, A./7*, 
and AGx approach their common classical value at high tem­
perature. However, even at room temperature the difference 
between the quantum-mechanical and classical values is not large. 
Consistent with the information conveyed by Figure 3, a small 
amount of nuclear tunneling is reflected in the enthalpy, which 
is ~2 kcal mor1 less than the classical value. The Franck-Condon 
factors also introduce a small negative entropy contribution at 
room temperature. The effects of the reductions in enthalpy and 
entropy of activation on the rate are in opposite directions and 
almost cancel. As a consequence the room-temperature rate is 
hardly affected by nuclear tunneling. 

The calculated activation parameters for the Fe(H2O)6
2+-

Fe(H2O)6
3+ exchange reaction are compared with the experimental 

values in Table II. There is fairly good agreement between the 
parameters calculated by using (d2° - ^3°) = 0.14 A and the 
experimental values based upon the diffusional model for the 
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Table II. Comparison of Calculated and Experimental 
Activation Parameters for Electron Transfer within the 
Fe(H2O)6

2 + IFe(H2O)6
3+ Precursor Complex at 25 0C 

and Zero Ionic Strength 

experimental0'b 

(diffusional) 
experimental"'0 

(collisional) 
classical^ 
classical6 

quantum mechanical^ 
quantum mechanical* 
semiclassical'1 

semiclassical' 

(<*a°-
d3°), A 

0.14 
0.11 
0.14 
0.11 
0.14 
0.11 

AGx*, 
kcal 

mor1 

14.9 

12.5 

14.8 
11.6 
14.1 
11.2 
14.1 
11.2 

AHx*, 
kcal 

mol"' 

13.5 

13.7 

14.8 
11.6 
12.8 
10.4 
12.8 
10.4 

A ^ * , 
cal deg"1 

mol"1 

-4.7 

+4.1 

0 
0 

-4.2 
-2.5 
-4.2 
-2.5 

° The experimental activation parameters have been extrapolat­
ed to zero ionic strength in the following manner. The measured 
rate constant of 4.2 M- ' s"1 at 25 0C and 0.55 M ionic strength 
(Silverman, J.; Dodson, R. W. /. Phys. Chem. 1952, 56, 846) was 
corrected to zero ionic strength by using the extended Debye-
Huckel equation with d = 7 A and c = -0.35 M"1. These para­
meters fit the iron(III)-vanadium(II) rate constants (Ekstrom, A.; 
McLaren, B. A.; Smythe, L. E./norg. Chem. 1976,15, 2853) at 
0.1 and 1.0 M ionic strength. This procedure gives a rate con­
stant of 0.14 M"1 s"1 corresponding to AG0* = 18.6 kcal mol"1 

for the Fe(H2O)6
2+-Fe(H2O)6

3+ reaction at 25 0C and zero ionic 
strength. The least-squares fit of all of the ironGII)-vanadium(II) 
kinetic data to the extended Debye-Huckel equation, using l/o2 

weighting of the rate constants, gives d= 13.5 A and AS0* = -22 
± 3 cal deg"1 mol"1. Satisfactory fits could not be obtained with 
smaller d values since the calculated parameters were extremely 
sensitive to the weighting factors and d values used. Consistent 
behavior in the range 4-7 A could, however, be obtained provided 
the fitting was restricted to the two lowest ionic strengths (0.1 
and 1.0 M). This procedure gives AS0* — 3 0 cal deg"1 mol"1. 
For the present purposes we shall assume that AS0* for the 
Fe(H2O)6

2+-Fe(H2O)6
3+ exchange is equal to -22 cal deg"1 mol"1, 

which is the AS0 value obtained from a linear extrapolation of 
the experimental AS* values for the iron(III)-vanadium(II) reac­
tion to zero ionic strength. Using the Gibbs-Helmholtz equation, 
AH0* for the exchange reaction at zero ionic strength is calculated 
to be 12.1 kcal mol"1. b The experimental activation parameters 
for electron transfer within the precursor complex were extracted 
from the experimental data by using a diffusional model for the 
formation of the precursor complex (see ref 13, eq 20b and 21b). 
We call this the diffusional model, rather than the statistical model 
(as done, for example, in ref 11 and 13) because, as shown by 
Eigen (Eigen,M.Z. Phys. Chem. (Frankfurt am Main) 1954,7, 
176), the equilibrium constant for the formation of the precursor 
complex can be expressed as the ratio of the forward and reverse 
diffusion rates, even though the diffusion coefficients do not ap­
pear in the final expression for the equilibrium constant. For this 
model, keK = (4nNr3/3)(kTlh) exp(.-AGx*/RT) and AG0* = AGx* 
+ AG0, AH0* = AHx* + AH0, and AS0* = ASx* + AS0 where 
AG0, A#0,and AS0 are 3.7 kcal mol"1 ,-1.4 kcal mol"1, and-17.3 
cal deg"1 mol"1. These values were calculated by using Ds = 78.5, 
dlnZ5s/dln T= -1.37, and/-= 6.9 A. e The experimental activa­
tion parameters were extracted as in footnote b except that a col­
lisional model for the formation of the precursor complex was 
used (see ref 13, eq 20a and 21a). For this model, fcex = Z X 
exp(-AG*//?Dand AG0 = 6.1 kcal mol"1, AH0 = -1.6 kcal mol"1, 
and AS0 = -26.1 cal deg"1 mol"'. These values were calculated 
by using Z = 1011 M"1 s"1 and the other parameters in footnote 
b. d Calculated from eq 10 and 14, usingiTout= 25.6 kcal mol"1 

and (rf2° - d3°) = 0.14 A. e Calculated from eq 10 and 14, using 
^out = 25.6 kcal mol"1 and (d2° - d3°) = 0.11 A. f Calculated 
from eq 31, usingEout = 25.6 kcal mol"1 and (d2° - d3°) = 0.14 
A. gCalculated from eq 31,USUIgJF01Jt= 25.6 kcal mol"1 and 
(d2° - d3°) = 0.11 A. h Calculated from eq 40 or 42, using ^0111 
= 25.6 kcal mol"1 and (d7° - d3°) = 0.14 A. ' Calculated from eq 
40 or 42, usingEm t = 25.6 kcal mol"1 and (d2° - d3°) = 0.11 A. 

formation of the precursor complex."'13 To the extent that the 
diffusional model is correct, this agreement would seem to leave 
very little room for nonadiabaticity. However, recent EXAFS 
studies32 indicate that the solution value of (d2° - J3

0) is 0.11 A, 
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Figure 7. Plot of the activation parameters (dashed line, AGx*; solid line, 
AH1*) for electron-exchange reactions vs. temperature, calculated by 
using EM = 25.6 kcal mol"1 (r = 6.9 A), vm = 432 cm"1, and (d2° - d}°) 
= 0.20, 0.14, 0.10, and 0.04 A, respectively. The horizontal lines are the 
classical values of the activation energy and enthalpy for the particular 
systems. 

Table III. Percentage Reaction from the Lowest Vibrational 
Level as a Function of (d2° - d3°) and Temperature 

% reaction at (d 2 ° - d3°) 

T, K 

40 
100 
300 
500 

0.04 A 

99.9 
91.6 
53.1 
35.8 

0.10 A 

99.5 
57.6 
5.2 
3.2 

0.14 A 

99.1 
32.6 
0.2 
0.1 

0.20A 

98.1 
8.6 
0.0 
0.0 

0 Calculated from eq 26,USUIg^0111 = 25.6 kcal mol"1 and vin • 
432 cm"1. 

rather less than the value determined crystallographically (0.14 
A). If the EXAFS value is used, the agreement between the 
calculated parameters (assuming adiabaticity) and the experi­
mental values based upon the diffusional model becomes poorer 
while the agreement with the values calculated with the collisional 
model improves. In view of the uncertainty in the values of (<i2° 
- d}°) and of AS0* noted in footnote a of Table II, it is difficult 
to draw any firm conclusions about the importance of nonadia­
baticity in the Fe(H2O)6

2+-Fe(H2O)6
3+ exchange reaction at this 

time. Calculations of HAB that are currently in progress should 
help to resolve this situation.33,34 

The effect of changing the inner-sphere barrier on the activation 
parameters is shown in Figure 7. The solvent barrier was kept 
constant (E1311x = 25.6 kcal mol"1, r = 6.9 A) for all the calculations 
while the value of (J2

0 ~ ^3°) was systematically varied. As 
expected, nuclear tunneling becomes more important as the dif­
ference between the metal-ligand bond distances increases. 
However the nuclear tunneling corrections to the room-temper­
ature rates are again seen to be small, even for systems with large 
inner-sphere barriers.35 Table IH shows the percentage of the 

(32) Sham, T. K.; Hastings, J. B.; Perlman, M. L. J. Am. Chem. Soc, in 
press. 

(33) Newton, M. D., work in progress, cited, in part, in ref 13. The results 
to date, based on direct iron-iron overlap, appear to give a reasonable account 
of the overall rate constant and suggest that there may well be an appreciable 
degree of nonadiabatic character. 

(34) Newton, M. D. Int. J. Quantum Chem., Symp., in press. Jafri, J. A.; 
Logan, J.; Newton, M. D. Isr. J. Chem., in press (special issue on theory of 
molecular structure). 

(35) Although the conclusion about the importance of nuclear tunneling 
at room temperature seems inconsistent with the calculations on the Co-
(NH3)6

2+-Co(NH3)6
3+ exchange reaction reported in ref 36, it should be noted 

that the authors of ref 36 compared the results of their quantum-mechanical 
calculation with the results of a classical calculation in which a different set 
of force constants had been used. 

(36) Buhks, E.; Bixon, M.; Jortner, J.; Navon, G. Inorg. Chem. 1979, IS, 
2014. 
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reaction that comes from the lowest vibrational level as a function 
of (^2

0 - ^3°) and temperature. To put the values in perspective, 
one should note that (d2° - d3°) values for the Co(NH3)6

2+'3+, 
Ru(H2O)6

2+'3+, and Ru(NH3)6
2+'3+ exchange reactions are 0.18,37 

~0 .1 , 3 8 and 0.04 A,37 respectively. 
Further insight into the temperature dependence of the rate 

constants can be obtained by using the Tolman interpretation39 

of the activation energy. Provided that the rate constant is of the 
Arrhenius form (eq 32a with A temperature independent), the 
activation energy is given by eq 32b 

k(T) = Ae-E>'RT (32a) 

E,= (E)K-(E) (32b) 

(Zs>R is the average energy of all the reacting molecules,40 and 
(E) is the average energy of all the molecules. The rate constants 
for the adiabatic reactions considered here are of this form (see, 
for example, the classical expression eq 6). On the other hand, 
as we have seen, the prefactor for nonadiabatic reactions is tem­
perature dependent and the rate constant is of the form shown 
in eq 33. For nonadiabatic reactions the appropriate form of eq 
32b is eq 34a 

k(T) = Br1Ve-^WRT (33) 

MTx - RT/2 = <Zs?n>R + <Zs0Ut>R (34a) 

= «/J i n)R - (Zs1n)) + «Zs0Ut>R - <£out» (34b) 

where (Zs?n)R and (Elul)R
 a r e t n e averaged inner- and outer-

sphere reorganization energies, respectively. Differentiation of 
eq 31 shows that in the present case AZZt is given by 

Aft = <£i„>R - (EJ + !<0 •£)">. (35a) 

where 

(EJ = 

Ztie-'A"/RT 

Y.e-<A*I*T 

and (Zsin)R is defined in footnote 40. Recalling that (Ae)R = 0, 
it follows from a comparison of eq 34a and eq 35a that the 
averaged outer-sphere reorganization energy is given by 

<£aout>R = (>^Y RT 
2 

(35b) 

The calculated values of AZZt, (Zs0Ut)R, and <Zsfn)R are pres­
ented in Table I. As expected, t\H*x increases with increasing 
temperature, approaching the classical value of (Zsin + Zsoul)/4 at 
high temperature (compare eq 21 and 33). The small values of 
AZZt at low temperatures reflect the contribution that nuclear 
tunneling makes to the rate. The values of <Zsfn>R and (Zs0Ut)R, 
however do not equal the classical values at high temperature. 
This arises as follows. The high-temperature value of (Ae2)R is 
given by eq 36a (Appendix B). Upon substituting this expression 
into eq 35b, the high-temperature value of the averaged outer-
sphere reorganization energy is obtained (eq 36b). Combining 
this result with the high-temperature result AH*X = (Ejn + E0J/4 
gives eq 36c. The latter is the expression for the averaged in­
ner-sphere reorganization energy in the high-temperature limit. 

(Ae2)R = 
2RTEmE 

Ol 

i-in "* £ mi 

(36a) 

(37) Stynes, H. C; Ibers, J. A. Inorg. Chem. 1971, 10, 2304. 
(38) Estimated value. See: Boucher, W.; Brown, G. M.; Sutin, N. Inorg. 

Chem. 1979, 18, 1447. 
(39) Tolman, R. C. "Statistical Mechanics with Application to Physics and 

Chemistry"; Chemical Catalog Co.: New York, 1927; Chapter XXI. 
(40) All average values denoted by a subscript R are defined by (<4)R = 

T.mEnAk„J^,j£„k^„ where km,„ is defined in Appendix A. 

<*>"-T('-I^§-) 

(36b) 

(36c) 

It is evident from the above equations that the high-temperature 
values of (Zsout)R and (Zs?n)R are less than the classical values 
Zsout/4 and Zsin/4, respectively, and that the difference increases 
with increasing temperature. This is a consequence of the fact 
that the former values were calculated from a nonadiabatic rate 
expression with a temperature-dependent prefactor, while the latter 
were calculated from an adiabatic rate expression with a tem­
perature-independent prefactor. Note that ( ^ t W ^ i ^ R = 

E0Ut/Em in the high-temperature limit. 
The above considerations suggest a procedure for partitioning 

AEfx between A//*, and AZZ ,̂ which is valid at all temperatures. 
Since AETx = (AlTln + A i O i l follows from eq 34a that 

A//*, + AZZ011, = <Zsfn)R + <Zs0Ut)R + (RT/2) (37a) 

If it is now assumed that RT/2 can be partitioned between AH*out 

and AIf1n by using Ej/(Ein + Zs0111) weighting, where; = out or 
in, respectively (as in eq 36b and 36c),41 then AH* and (Zs*)R are 
related by 

A / C = (ElM) 

V, Ein + Zs0Ut / 
AZZTn = <£?n>R + 

Values of AH*0M and AZZ*„ calculated from eq 37 are included in 
Table I. The values of AZẐ ut are seen to be essentially equal to 
Zsout/4 throughout the entire temperature range. This is an im­
portant result since it shows that energy sharing between the 
inner-sphere and outer-sphere modes does not affect the solvent 
barrier defined in eq 37b. 

IV. Nuclear Tunneling Factors 
In this section we consider various procedures for correcting 

the classical rate expression for the effects of nuclear tunneling. 
As in the previous section, we consider that the nuclear tunneling 
corrections are only important for the inner-sphere modes and 
we define a nuclear tunneling factor (eq 38) as the ratio of the 
rate constant determined by the inner-sphere modes (including 
the effects of nuclear tunneling) to the high-temperature limit 
of this rate constant (i.e., its classical limit): 

Tn = MT=*) 
= g-(4AG*in(r)-£in)/4^r (38) 

This procedure enables us to derive overall rate expressions that 
do not explicitly allow for energy sharing between the solvent and 
inner-shell modes. Its use is justified by the fact that, as noted 
above, the value of the solvent reorganization energy calculated 
with energy sharing does not differ significantly from the classical 
value of ZJ0Ut/4 at any temperature (Table I). The average 
breathing frequency (defined by eq 13a) for the two oxidation 
states is again used since we have seen that no significant error 
is introduced by this procedure. This allows us to use the single 
normal-mode approach. 

Following in the spirit of the quantum-mechanical treatment 
we use eq 23 to define the rate for a system to go from an initial 
state Av to a set of final states [Bw] but we consider only the 
inner-sphere modes. We again Boltzmann average over a set of 
initial states \Av] and assume that the energy can be written as 
a sum of terms for the two reactants. Proceeding as before and 
replacing the Dirac 8 function by a Kronecker 8 function divided 

(41) This is equivalent to assuming that eq 36a is valid at all temperatures. 
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Table IV. Values of the Nuclear Tunneling Factor and Activation Parameters for the Fe(H2O)6 

Calculated by Using the Semiclassical Models 
-Fe(H2O)6

3+ Electron Exchange Reaction 

T, K 
ACi*„,° 

kcal mol"' 
AH* a 

kcal mol" 
cal deg 

mol"1 r ° 1 I i 

A G-* ° 
kcal mol" 

A#i*„,b 

kcal mol" 
cal deg" 

mol"1 

20 
40 
60 
80 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 

1000 
1500 
2000 
2500 

1079 

1 0 " 
1018 

1 0 " 
107 

5.5 X 
9.8 X 
7.2 X 
3.8 X 
3.4 X 
1.1 X 103 

3.1 X 10' 
6.6 
3.1 
2.1 

.7 

.4 

.3 

.2 

.2 
1.1 
1.1 
1.1 
1.0 
1.0 
1.0 
1.0 
1.0 

1.08 
2.15 
3.20 
4.14 
4.93 
6.28 
7.06 
7.44 
7.70 
7.86 
7.98 
8.06 
8.11 
8.16 
8.19 
8.22 
8.24 
8.26 
8.31 
8.34 
8.36 
8.36 
8.37 

0.00 
0.01 
0.19 
0.66 
1.37 
3.33 
4.83 
5.82 
6.48 
6.92 
7.23 
7.45 
7.61 
7.74 
7.84 
7.91 
7.97 
8.02 
8.18 
8.28 
8.32 
8.34 
8.37 

53.9 
53.5 
50.2 
43.5 
35.6 
19.6 
11.0 

6.5 
4.07 
2.70 
1.87 
1.35 
1.00 
0.76 
0.59 
0.47 
0.38 
0.31 
0.13 
0.04 
0.02 
0.01 
0.0 

1.9 X 1080 

4.8 X 1034 

3.3 X 1 0 " 
1.2 X 10 ' 2 

7.4 X 107 

1.7 X 103 

3.9 X 10' 
7.8 
3.5 
2.3 
1.8 
1.5 
1.4 
1.3 
1.2 
1.2 
1.1 
1.1 
1.1 
1.0 
1.0 
1.0 
1.0 

1.03 
2.03 
3.01 
3.96 
4.77 
6.16 
6.92 
7.36 
7.62 
7.80 
7.91 
8.00 
8.06 
8.10 
8.14 
8.17 
8.19 
8.21 
8.27 
8.31 
8.32 
8.33 
8.37 

0.02 
0.04 
0.09 
0.38 
1.10 
3.13 
4.66 
5.68 
6.35 
6.81 
7.13 
7.36 
7.53 
7.66 
7.76 
7.84 
7.91 
7.96 
8.12 
8.24 
8.28 
8.30 
8.37 

50.4 
49.7 
48.8 
44.7 
36.8 
20.2 
11.3 

6.7 
4.23 
2.82 
1.96 
1.42 
1.06 
0.81 
0.63 
0.50 
0.41 
0.33 
0.15 
0.04 
0.02 
0.01 
0.0 

a Calculated from eq 41 and 42, using (d2° - d3°) = 0.14 A and vin = 432 cm"1. b Calculated from eq 40, using (d2° - d3°) = 0.14 A and 
rin = 432cm" 1 . 

by hvin, we obtain the following expression for the inner-sphere 
electron-transfer rate constant: 

<
m/RTr 2 (39a) 

Similar expressions have also been used by Jortner and Ulstrup42 

and by Laplante and Siebrand.43 The high-temperature limit 
of eq 39a is eq 39b (compare eq 21 with £out = 0) and the nuclear 
tunneling factor for this case is given by eq 39c. 

h \EinRT/ 
km{T = ») = 

= (4irEinRT)^ _ 

" hv.aQKe-W*Tm 

-EiJART 

m/RTS 

(39b) 

(39c) 

By analogy with the full quantum-mechanical case, the activation 
parameters are defined by 

(ATE- RT)^2 

e-AG.iBm,RT = "> > Ze-^/RTSm m
2 (40) 

nvinQA m 

with the activation enthalpy and entropy being obtained from the 
temperature dependence as before. Since the solvent is being 
treated classically, AG*ut = AH*0M = Eout/4, and ASo111 = 0. This 
treatment yields activation parameters that are in excellent 
agreement with those obtained from the full quantum-mechanical 
treatment at all temperatures (20-1500 K; see Figure 8). The 
calculated values of Tn are presented in Table IV. 

Another approach is to use the closed-form expressions derived 
by Holstein.5 Holstein starts with an expression that is the product 
of three factors: the rate of the system approaching the barrier, 
the tunneling probability, and a Landau-Zener-type factor. When 

(42) Jortner, J.; Ulstrup, J. Chem. Phys. Lett. 1979, 63, 236. 
(43) Laplante, J. P.; Siebrand, W. Chem. Phys. Lett. 1978, 59, 433. The 

high-temperature limit presented here (eq 39b) is different from the one given 
by Laplante and Siebrand (see their eq 10). The exponent in their expression 
is (£in - hvm)/4RT; this exponent comes from an improper expansion of Z 
(defined in Appendixes B and C) as {4a2kT) exp(-l/2/tT) rather than as 
4a2kT. Their prefactor is also incorrect by a factor of ir/2. 

IOOO 

Figure 8. Plot of the inner-sphere activation parameters for the Fe-
(H2O)6

2+-Fe(H2O)6
3+ electron-exchange reaction vs. temperature cal­

culated by using the semiclassical model with (^2
0 - d}°) = 0.14 A, i>m 

= 432 cm"1, and eq 40 or 42. 

this product is integrated over all positive velocities, Holstein 
obtains an expression which can be cast in the following form:44 

M D = h \ Emhvm J 
e-((£i„/*Kln)tanh(«rln/4*:71) 

(41a) 

The high-temperature limit of eq 41a is eq 39b, and the tunneling 
factor for this case is thus 

< - ( 

sinh (hvm/2kT) \ 1 / 2 

hvin/2kT ) 
g-Wijh^jn^hv-jikri-ihvjAkT)) 

(41b) 

(44) Equation 41a is valid over a larger temperature range than is the 
alternative semiclassical expression, eq 11-26 of ref 7. This point has also been 
noted in ref 1 by Holstein in connection with the model proposed in ref 9. 
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Equation 41b can be derived from eq 39c by use of an asymptotic 
form of the modified Bessel function (see Appendix C).45 

Substitution of eq 41b into the semiclassical rate expression, eq 
5, gives activation parameters that are in excellent agreement with 
those obtained by using the full quantum-mechanical expression 
at all but the lowest temperatures (T < 80 K). The main con­
tribution to Tn comes from the exponential factor; in fact, the 
agreement between the results obtained by using the full quan­
tum-mechanical treatment and those given by eq 41b becomes 
excellent over the entire temperature range (Figure 7) when the 
pre)"actor in eq 41b is replaced by unity. Using this modifed eq 
41b, we can write relatively simple closed-form expressions for 
the inner-sphere activation parameters: 

A G W = £ i "(£) t a n h (^ ) (42a) 

A#f„W (42b) - T - ( a ? ) 

(42c) 

Equation 42b is identical with the expression of Holstein5 for the 
saddle-point energy, which is the energy at which the optimum 
compromise between activation and tunneling is achieved. 

The above semiclassical expressions can be readily converted 
to the strong coupling limit (case (c) of the Introduction) by 
combining eq 42a with eq 29. Moreover, provided that hvlrt > 
AkT, eq 42 can be further simplified to give eq 43. The latter 
equation is a good approximation at temperatures below 150 K.47 

AG*n(D •<£) 
E-m 

Atf*n(7) = j f W » r 

\ hvm) 
. -, , m ^in I . 1-,1.T AkT 

AS-W- TA e~^lkr- nVi, 

(43a) 

(43b) 

(43c) 

In summary, the modified Holstein equations can be used within 
the semiclassical framework to obtain closed-form expressions for 
the inner-sphere reorganization parameters. These expressions 
(together with AG*ut = A /C , = £ou t/4, and A5*ut = 0) give re­
sults that are essentially identical with those of the full quan­
tum-mechanical treatment over the entire temperature range. This 
agreement justifies the use of the semiclassical approach developed 
here. 

Conclusions 
The semiclassical approach in which nonadiabaticity and nu­

clear tunneling factors are introduced as corrections to the classical 
expression gives results that are in excellent agreement with those 
yielded by the full quantum-mechanical treatment. This is an 
important conclusion since energy sharing between the inner-sphere 
and solvent modes is incorporated into the quantum-mechanical, 
but not into the semiclassical, model. As is apparent from the 
above, the energy-sharing terms give rise to the presence of (.Ein 

+ .E0,,,) in the prefactor in the high-temperature form of the 
quantum-mechanical rate expression. In the separable semi-
classical approach used here this prefactor is imposed at all 
temperatures through the Landau-Zener expression, with re­
markable success. 

(45) If in eq 41b only the first two terms in the expansion of tanh (hv^/kT) 
are retained, and the prefactor is replaced by unity, then the following ex­
pression presented previously by Nikitin46 is obtained: Tn = exp[(£j„/ 
hvJikrJAkTl'M. 

(46) Nikitin, E. E. "Theory of Elementary Atomic and Molecular Pro­
cesses in Gases"; Clarendon Press: Oxford, 1974; p 115. See also ref 13. 

(47) At T = 0 K, ASin* = kEJh^. 

The calculations show that nuclear tunneling effects are large 
at low temperature but that such effects are not important at room 
temperature unless the difference between the equilibrium con­
figurations of the two oxidation states is extremely large. Over 
the entire temperature range the inner-sphere reorganization free 
energies and enthalpies are accurately given by the modified 
Holstein expressions (eq 42). 

Appendix A 
The value of (Ae) R can be shown to be zero by the following 

argument. The average value of Ae is defined by 

2- l*Km,n^em,n 

<Ae)R = 
LZk 

m,n 

where 

kmn = e'((A"lRT)[Sm 2]e-(Asm.«+£out)2/«oui«7-

(Al) 

(A2) 

and the summation is from zero to infinity. If the last term in 
eq A2 is expanded and grouped with the first term, then 

Consider the terms /c,,, and fc,,,, where the reactants and products 
have interchanged their energy levels. Because of the assumption 
of the same force constants for all the reactants and products, 
(J + 4) = « + «f), Ae,,, = -Ae,,,, (Ae,,,)2 = (Ae,,,)2, and S,,,2 

= Sq/. This requires that &,,, be symmetric with respect to the 
interchange of / and q, i.e., /c,,, = k„j. Since Ae,,, is antisymmetric 
with respect to the interchange of /and q, the only terms that can 
make a net contribution to the numerator in eq Al are the / = 
q terms. But these terms are zero since Ae,,, = 0. Therefore the 
numerator in eq Al is zero, giving (Ae)R = 0. 

Appendix B 
Equation 36a can be derived as follows. Equation 26 can be 

converted to the equivalent expression5,7 

+•*> 

kd = A Z emh">°'2kTI]m](z)e-<E««+m'"">)2l*E°>><RT (Bl) 
m=-» 

ivhere the I\m\(z) are modified Bessel functions, Ae = mhi>in, z = 
(Ein/hvm) csch (hi>in/2kT), and 

A = e-(z)cosUh»iJlkT) 

Equation Bl can be rearranged to give 

where 

and 

feel ^ 2-Km 

A , = Ae-Emt/4RT 

km = e-(m/,,in)
2/4£=»,*77|m|(z) 

(B2) 

Note that A and A 'are not functions of m. From the definition 
of <Ae2>R

40 it follows that 

<Ae2)R = 2Z(mhViD)2km/2Zkm (B3) 

m m 

In the high-temperature limit, z and I\m\(z) can be replaced by 

z = 2kTEin/(hvm)2 

1 
I\m\(z) = 

(2irz) 
_e(z-m2/2z) 

1/2 

and the sum can then be performed as an integral over m. This 
leads to the expression 

<Ae2)R = (hvj2fdm m2e-am2/fdm e w 
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where 

a = {hvm)\Em + £ o u t ) / 4 £ i n £ o u t J R r 

Evaluation of this integral yields eq 36a. 

Appendix C 

The relationship between eq 39a and eq 41a can be shown as 
follows. Equation 39a can be rewritten as 

-{*¥) w 
where 

and 

i + . 
W = Y p-mh"in/kTS 2 

«"in&4«=0 

(Cl) 

(C2) 

QA = 
1 

\ _ e~hviJkT 

The Franck-Condon factors can be expressed in terms of Laguerre 
polynomials43,48 

S 2 = e-EJh» 

Substitution in eq C2 gives 

J _ g-hvmjkT 
W = 

hva 
e-(E«,li«>b>Y. (e-(-h"i"tkT>)m< 

With the aid of the identity* 

m I - V 

.(w2\ 

(C4) 

(C5) 

(48) Keil, T. H. Phys. Rev. A 1965,740, 601. 

where I0(2xy^2/(\ -y)) is a zero-order modified Bessel function, 
W can be rewritten as follows: 

^ = _ e - (£in/ '» ' in)( )+exp(-^i„/2fcT)csch(^ i n /2k7)) / o ( z - ) 

fc"in 

where z has been defined in Appendix B. For large values of z 
(that is, at high temperatures) 

hi') = 
1 

(2T2)'/2 
e* 

and W becomes 

W = — e -W/*n. (C6) 

where 

\2*EiM» csch \^fj) 

2^j-cscH^J (C7) F = I + e-
h"^2kT csch 

Since 

(cosh (x) - l)/sinh (x) = tanh (x/2) 

the expression for F reduces to 

F = tanh 
\4kT) 

and therefore the expression for W is 

W = ( sinh (hvKJ2kT) \ 

2irEinhvm J 

1/2 

g-(£in/*i'm)tajih(*i'i1,/4*:r) /Q%j 

Substitution of this expression into eq C l gives eq 41a. 

(49) Copson, E. T. "Functions of a Complex Variable"; Oxford University 
Press: London, 1935; p 207. 

Phosphole [2 + 2] and [4 + 2] Dimerizations around Metal 
Carbonyl Moieties. Structure and Chemistry of a New Type 
of Exo [4 + 2] Dimers 
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Abstract: UV irradiation of mixtures of 3,4-dimethylphospholes (L) with M(CO)6 (M=Cr, Mo, W) leads mainly to (L-L)M(CO)4 

complexes derived from Diels-Alder [4 + 2] phosphole dimers acting as chelating ligands. An X-ray structural study of one 
of these complexes shows that, contrary to normal endo phosphole dimers, these compounds have the exo configuration and 
that the phosphorus bridge is very strained: /CPC = 79.4°. With 1-phenylphosphole and Mo(CO)6, the (L-L)Mo(CO)4 

complex has unexpectedly the structure of a [2 + 2] "head-to-head" dimer. At 50 0 C the [4 + 2] dimeric complexes react 
with sulfur to yield the corresponding [4 + 2] exo dimeric phosphole sulfides, the spectral and chemical properties of which 
are compared with those of the corresponding endo dimeric sulfides. Contrary to the endo sulfides, the exo sulfides collapse 
at a relatively low temperature to yield a phosphinidene sulfide and a phosphindole derivative. Phenylphosphinidene sulfide 
thus prepared has been trapped by 2,3-dimethyl-l,3-butadiene to give a phospholene sulfide. Also based upon these observations, 
a two-step conversion of 1-phenylphosphole into 1-phenylphosphindole P-sulfide is described. 

Weakly substituted X5 phospholes are known to dimerize in­
stantly even at low temperature (eq 1). The structure of one such 

Diels-Alder dimer has been studied by X-ray.2 The most in­
teresting features are (1) the endo configuration at the junction 
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